Linear Recurrences and Asymptotic Behavior of Exponential Sums of Symmetric Boolean Functions

نویسندگان

  • Francis N. Castro
  • Luis A. Medina
چکیده

In this paper we give an improvement of the degree of the homogeneous linear recurrence with integer coefficients that exponential sums of symmetric Boolean functions satisfy. This improvement is tight. We also compute the asymptotic behavior of symmetric Boolean functions and provide a formula that allows us to determine if a symmetric boolean function is asymptotically not balanced. In particular, when the degree of the symmetric function is a power of two, then the exponential sum is much smaller than 2n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

Experimental and Mathematical Investigation of Time-Dependence of Contaminant Dispersivity in Soil

Laboratory and field experiments have shown that dispersivity is one of the key parameters in contaminant transport in porous media and varies with elapsed time. This time-dependence can be shown using a time-variable dispersivity function. The advantage of this function as opposed to constant dispersivity is that it has at least two coefficients that increase the accuracy of the dispersivity p...

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity

In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011